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2021	Russell	Sage	Foundation	Summer	Institute	in	Social-Science	Genomics	
	

Problem	Set	1	
	
The	purpose	of	this	problem	set	is	to	teach	some	basic	concepts	that	will	be	useful	for	the	
course,	most	of	which	we	will	start	using	right	away	in	the	early	lectures.	Note	that	the	
problem	set	looks	longer	than	it	is,	because	the	problems	themselves	are	teaching	the	
material.	Nonetheless,	we	expect	that	the	problem	set	will	require	a	serious	time	
commitment,	so	make	sure	you	give	yourself	enough	time	to	complete	the	problem	set	
before	the	Summer	Institute	begins.		
	
Please	email	your	completed	problem	set	to	rsf.genomics.school@gmail.com	with	the	
subject	line,	“Completed	Problem	Set	1”,	before	the	opening	dinner	on	Sunday,	August	8.	
	
1.			Hardy-Weinberg	equilibrium	
	
At	a	typical	locus	(meaning	“location”)	in	the	genome,	each	individual	in	a	population	
inherits	one	of	two	possible	alleles	from	each	parent.	Each	child	receives	one	of	the	father’s	
two	alleles	at	random	and	one	of	the	mother’s	two	alleles	at	random.	For	concreteness,	we	
denote	one	possible	allele	as	“+”	and	the	other	as	“−”.	An	individual’s	genotype	refers	to	the	
combination	of	alleles	at	the	locus.	Therefore,	there	are	three	possible	genotypes	at	each	
locus:	++,	−+,	and	−−.	
	
(You	may	assume	that	the	biological	function	of	the	locus	does	not	depend	on	which	allele	
was	received	by	which	parent.	This	is	generally	true,	the	exception	being	cases	of	genomic	
imprinting,	in	which	the	allele	of	only	one	of	the	parents	is	expressed.)		
	
Denote	the	frequency	of	the	“+”	allele	in	the	population	by	𝑝,	and	denote	the	frequency	of	
the	“−”	allele	by	𝑞 = 1 − 𝑝.	Denote	the	population	frequencies	of	the	three	genotypes	by	
𝑃! ≡ 𝑃𝑟(− −),	𝑃" ≡ 𝑃𝑟(− +),	and	𝑃# ≡ 𝑃𝑟(+ +) = 1 − 𝑃! − 𝑃".	
	
Hardy-Weinberg	equilibrium	(HWE)	refers	to	a	particular	relationship	between	the	allele	
frequencies,	𝑝	and	𝑞,	and	the	genotype	frequencies,	𝑃!,	𝑃",	and	𝑃#.	It	serves	as	an	important	
benchmark	case	in	both	theoretical	and	empirical	analyses	in	genetics.	This	problem	
defines	HWE,	and	the	next	problem	develops	some	of	its	implications.	
	
a. Explain	why	the	following	two	equations	must	always	hold,	regardless	of	the	values	of	

𝑃!,	𝑃",	and	𝑃#:	
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𝑝 = 𝑃# +
1
2
𝑃"	

𝑞 = 𝑃! +
1
2
𝑃".		

	
Hint:		Consider	the	number	of	each	type	of	allele	(+	and	−)	in	each	genotype.		
	

Thus,	if	we	know	𝑃!,	𝑃",	and	𝑃#,	then	the	values	of	𝑝	and	𝑞	are	pinned	down.		
	
b.		 Now	consider	the	reverse:	If	we	know	p	and	q,	what	can	we	conclude	about	𝑃!,	𝑃",	and	

𝑃#?	Show	that	the	two	triplets	shown	below	are	consistent	with	the	same	values	of	p	
and	q.	

	
(i) 𝑃!:	0.5	𝑃":	0.4	𝑃#: 0.1	

	
(ii) 𝑃!:	0.6	𝑃":	0.2	𝑃#: 0.2	

 
Therefore,	knowing	p	and	q,	the	population	frequencies	of	+	and	−	alleles,	does	not	
uniquely	determine	𝑃!,	𝑃",	and	𝑃#,	the	population	frequencies	of	different	genotypes,	unless	
we	make	some	assumptions.	These	assumptions	and	their	implications	are	the	subject	of	
the	remainder	of	this	problem.	
	
Specifically,	we	make	five	assumptions	about	the	population:	
	

i.		The	population	is	large.	
ii.	There	are	no	mutations.	
iii.		There	is	no	migration	(i.e.,	no	immigration	or	emigration).	
iv.		There	is	no	selection	(i.e.,	individuals	of	any	genotype	have	the	same	number	of	
offspring	on	average	than	individuals	of	any	other	genotype).	
v.		Mating	is	random	(i.e.,	the	probability	of	mating	with	a	partner	of	any	particular	
genotype	is	independent	of	one’s	own	genotype).	

	
c.		 Explain	why	Assumptions	i-iv,	taken	together,	imply	that	𝑝	and	𝑞	are	constant	from	one	

generation	to	the	next.		
	
The	addition	of	Assumption	v	(random	mating)	takes	the	implications	further.	In	particular,	
we	will	focus	on	how	the	distribution	of	genotypes,	(𝑃!, 𝑃", 𝑃#),	changes	from	one	
generation	to	the	next.	
	
d.		 Explain	why	Assumption	v	implies	that	the	alleles	one	inherits	from	one's	father	and	

mother	are	independent	from	each	other.		
	
e.	 Using	this	fact,	conclude	that	
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𝑃! = 𝑞#	 (1)	
𝑃" = 2𝑝𝑞	
𝑃# = 𝑝#	

(2)	
(3)	

	
Equations	(1)-(3)	characterize	the	HWE.	It	is	an	equilibrium	in	the	sense	that	once	the	
genotypes,	(𝑃!, 𝑃", 𝑃#),	are	equal	to	their	Hardy-Weinberg	frequencies,	they	will	be	constant	
from	one	generation	to	the	next.	Note	that	regardless	of	the	genotype	frequencies	in	the	
parents’	generation,	the	population	will	be	in	HWE	in	the	offspring	generation,	provided	
that	the	assumptions	underlying	HWE	have	been	met.	
	
When	working	with	individual-level	genetic	data,	we	observe	both	the	allele	frequencies	
and	the	genotype	frequencies	in	the	sample.		Let	�̂�	and	𝑞4	denote	the	allele	frequencies	in	
the	sample,	and	let	𝑃5!,	𝑃5",	and	𝑃5#	denote	the	genotype	frequencies	in	the	sample.	Note	that	
even	if	the	sample	is	randomly	drawn	from	a	population	that	is	in	HWE,	the	sample	analogs	
of	equations	1-3	are	unlikely	to	hold	exactly	due	to	random	sampling	error.	
	
If,	at	a	high	level	of	statistical	confidence,	we	can	reject	the	null	hypothesis	that	the	sample	
analogs	of	equations	1-3	hold,	it	may	be	that	the	assumptions	underlying	HWE	are	violated.	
In	practice,	Assumptions	i-v	are	rarely	perfectly	satisfied,	and	yet	it	turns	out	that	the	HWE	
equations	are	typically	robust	to	deviations	from	these	assumptions. 
 
Some	important	additional	notes:	
	
Note	1:	A	standard	test	for	HWE	is	Pearson’s	𝜒#	test.	The	test	statistic	is	a	measure	of	the	
distance	between	the	genotype	frequencies	expected	under	HWE	and	the	genotype	

frequencies	observed	in	the	sample:	6$%
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7𝑁,	where	𝑁	is	the	

sample	size.	Under	the	null	hypothesis	of	HWE,	this	test	statistic	follows	a	𝜒#	statistic	with	
1	degree	of	freedom.	For	this	distribution,	the	5%	significance	threshold	is	3.84.	Therefore,	
at	the	5%	significance	level,	one	would	reject	the	null	hypothesis	of	HWE	when	the	value	of	
the	test	statistic	exceeds	3.84.	
	
Note	2:	As	an	empirical	matter,	major	deviations	from	HWE	are	often	an	indication	of	
genotyping	errors	caused	by	factors	such	as	“heterozygote	dropout”;	see,	e.g.,	chapter	16	
(p.	375)	in	Neale	et	al.	(2007).	For	this	reason,	a	test	of	HWE	is	often	used	as	a	quality-
control	check	in	genome-wide	analyses,	and	genetic	variants	that	depart	substantially	from	
HWE	are	dropped	from	the	analysis.	
	
References	
	
Sullivan,	PF,	and	S	Purcell.	2007.	“Analyzing	genome-wide	association	study	data:	a	tutorial	
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using	PLINK.”	In	Statistical	Genetics:	Gene	Mapping	through	Linkage	and	Association,	
eds.	BN	Neale,	MA	Ferreira,	SE	Medland,	and	D	Posthuma.	Taylor	&	Francis	Group,	
355–394.	
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2.			Additive	and	dominance	variance	components	
	
A	phenotype	refers	to	any	individual-level	outcome	that	may	be	affected	by	genes.	For	
example,	height,	schizophrenia	risk,	or	educational	attainment	could	each	be	a	phenotype.	
We	will	denote	the	value	of	individual	𝑖’s	phenotype,	say	height	in	centimeters,	by	𝑦. .		
	
In	this	problem,	we	will	study	the	relationship	between	individuals’	phenotypes	and	their	
genotype	at	a	single	locus.	In	particular,	we	will	decompose	the	relationship	into	a	linear	
component	(usually	called	the	“additive	component”)	and	a	non-linear	component	(usually	
called	the	“dominance	component”).	This	decomposition	is	useful	in	empirical	work,	and	it	
is	critical	to	understand	conceptually	in	order	to	interpret	the	meaning	of	empirical	
findings	in	genomics	research.	
	
As	in	Problem	1,	we	denote	the	two	alleles	that	can	be	found	at	a	particular	locus	by	“+”	
and	“−”,	yielding	three	possible	genotypes:	++,	−+,	and	−−.	Define	an	individual’s	
genotype	score,	𝑥. ∈ {0,1,2},	as	the	number	of	+	alleles	he	or	she	has:	
	

𝑥. = [0	𝑓𝑜𝑟	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	 − −	1	𝑓𝑜𝑟	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	 − +	2	𝑓𝑜𝑟	𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒	 + +	] 
	
In	an	abuse	of	terminology,	the	genotype	score	is	often	called	the	“genotype.”	Note	that	we	
have	defined	it	with	respect	to	+	being	the	reference	allele,	but	either	allele	could	be	used	
as	the	reference	(this	choice	is	completely	arbitrary).	
	
Suppose	we	know	the	joint	distribution	of	(𝑦. , 𝑥.)	in	the	population.	Our	goal	is	to	find	the	
best	predictor	function,	𝐵𝑃(𝑦.|𝑥.):	the	function	that	gives	the	best	prediction	of	𝑦. 	given	any	
particular	observed	value	of	𝑥. .	
	
To	formalize	this	problem,	we	need	to	be	precise	about	what	we	mean	by	“best	prediction.”	
The	most	common	approach,	which	we	will	pursue	here,	is	to	minimize	the	expected	
squared	prediction	error.	To	be	precise,	we	define	the	best	predictor	function	for	𝑦. 	as	a	
function	of	𝑥. 	by	
	

𝐵𝑃(𝑦.|𝑥.) ≡ 𝑎𝑟𝑔𝐸 JK𝑦. − 𝑔(𝑥.)L
#|𝑥.M	.	 (4)	

	
That	is,	we	find	the	function	𝑔(𝑥.)	so	that,	when	we	draw	randomly	from	the	population	
distribution	of	𝑦. ,	the	expected	value	of	the	squared	difference	between	𝑦. 	and	𝑔(𝑥.)	is	
minimized.		
	
It	can	be	shown	that	the	best	predictor	function	of	𝑦. 	is	the	conditional	expectation	function:		
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𝐵𝑃(𝑦.|𝑥.) = 𝐸[𝑦.|𝑥.].	

	
(Note:	If	you	are	interested,	try	reaching	this	solution	by	yourself	by	considering	the	
problem	for	each	fixed	value	of	𝑥. 	separately,	say	starting	with	𝑥. = 0	and	defining	𝑧 ≡
𝑔(0).	To	find	the	value	of	𝐵𝑃(𝑦.|𝑥. = 0),	take	the	derivative	of	𝐸[(𝑦. − 𝑧)#|𝑥. = 0]	with	
respect	to	𝑧	and	set	it	equal	to	0.)	
	
a.		 Explain	why	(by	definition	of	the	conditional	expectation)	we	can	always	decompose	

the	value	of	the	phenotype	into	the	sum	of	its	conditional	expectation	and	a	residual	
that	is	uncorrelated	with	genotype:	

	
𝑦. = 𝐸[𝑦.|𝑥.] + 𝜖. ,	

	
where	𝐸(𝜖.) = 0	and	𝐶𝑜𝑣(𝑥. , 𝜖.) = 0.	

	
We	will	now	decompose	the	conditional	expectation	function	into	the	sum	of	a	linear	
(“additive”)	part	and	a	non-linear	(“dominance”)	part.	To	simplify	the	expression	we	will	
obtain,	we	first	re-center	the	phenotype	measure	(just	subtracting	a	constant):	
	

�̌�. ≡ 𝑦. −
𝐸(𝑦.|𝑥. = 0) + 𝐸(𝑦.|𝑥. = 2)

2 .	

	
We	define	the	additive	effect	as	𝑎 ≡ 𝐸K�̌�.|𝑥. = 2L	and	we	define	the	dominance	deviation	as	
𝑑 ≡ 𝐸K�̌�.|𝑥. = 1L.		
	
b.		 Show	that		
	

𝐸K�̌�.|𝑥. = 0L = −𝑎.	
	
c.		 Show	that		
	

𝐸K�̌�.|𝑥.L = (𝑥. − 1)𝑎 + 𝐼{𝑥. = 1}𝑑,	 (5)	
	

where	𝐼{∙}	is	an	indicator	function	that	takes	the	value	1	when	the	expression	inside	the	
curly	brackets	is	true	and	takes	the	value	0	otherwise.		
	
(Hint:	Show	that	Equation	5	reduces	to	𝑎	when	𝑥. = 2,	to	– 𝑎	when	𝑥. = 0,	and	to	𝑑	
when	𝑥. = 1.)	
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d.		 Given	equation	(5),	explain	why	it	makes	sense	to	refer	to	𝑎	as	the	“additive	effect”	(of	

the	“+”	allele)	and	d	as	the	“dominance	deviation.”	
	
e.			 In	one	or	more	simple	figures	where	the	x-axis	is	𝑥. 	and	the	y-axis	is	𝐸K�̌�.|𝑥.L,	draw	

three	cases:	𝑑 = 0,	𝑑 = 𝑎,	and	𝑑 = −𝑎.	Explain	why	𝑑 = 𝑎	corresponds	to	a	situation	of	
Mendelian	inheritance	where	the	phenotype	is	a	“dominant	trait”	(i.e.,	inheriting	a	“+”	
allele	from	either	the	mother	or	the	father	is	sufficient	for	enhanced	phenotypic	
expression).	Explain	why	𝑑 = −𝑎	corresponds	to	a	situation	of	Mendelian	inheritance	
where	the	phenotype	is	a	“recessive	trait”	(i.e.,	inheriting	a	“+”	allele	from	both	the	
mother	and	the	father	is	needed	for	enhanced	phenotypic	expression).	(Note	that	
equation	(5)	is	a	generalization	of	these	two	cases,	allowing	for	any	value	of	𝑑.)	

	
The	exercises	above	show	that	when	𝑑 ≠ 0,	the	best	predictor	function	is	non-linear.	
However,	we	will	often	want	to	rely	on	the	best	possible	linear	approximation	to	the	
relationship	between	𝑦. 	and	𝑥. .		
	
Therefore,	consider	the	problem	of	finding	the	best	linear	predictor	for	𝑦. 	as	a	function	of	𝑥. ,	
𝐵𝐿𝑃(𝑦.|𝑥.),	defined	as	the	function	𝑔(𝑥.)	that	solves	the	problem	in	equation	(4)	but	
restricted	to	have	the	form	𝑔(𝑥.) = 𝛼 + 𝛽𝑥. 	for	some	constants	𝛼, 𝛽.	This	problem	can	be	
described	formally	as:	
	

𝐵𝐿𝑃(𝑦.|𝑥.) ≡ [𝛼 + 𝛽𝑥.|(𝛼, 𝛽) = 𝑎𝑟𝑔𝐸 JK𝑦. − (𝛼 + 𝛽𝑥.)L
#M	\.	 (6)	

	
We	solve	this	minimization	problem	by	setting	𝛽	equal	to	the	population	regression	
coefficient	and	setting	𝛼	equal	to	the	population	regression	intercept:	
	

𝛽 =
𝐶𝑜𝑣-𝑦𝑖, 𝑥𝑖.
𝑉𝑎𝑟(𝑥𝑖)

,	

	
𝛼 = 𝐸[𝑦.] − 𝛽𝐸[𝑥.].	

	
𝐵𝐿𝑃(𝑦.|𝑥.) = 𝛼 + 𝛽𝑥. .	

	
(Note:	If	you	are	interested,	try	reaching	this	solution	by	yourself	by	taking	the	partial	
derivatives	of	𝐸 JK𝑦. − (𝛼 + 𝛽𝑥.)L

#M	with	respect	to	𝛼	and	𝛽,	setting	them	both	equal	to	0,	
and	solving	the	two	equations	simultaneously	for	𝛼	and	𝛽.)	
	
We	often	refer	to	the	best	linear	predictor	function	as	the	population	regression	equation.	
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As	in	Problem	1,	denote	the	frequency	of	the	“+”	allele	in	the	population	by	𝑝,	and	denote	
the	frequency	of	the	“−”	allele	by	𝑞 = 1 − 𝑝.	From	here	onward	in	this	problem,	we	will	
assume	that	the	genotype	frequencies	are	in	HWE,	meaning	that	the	following	equations	
apply:	
	

𝑃! =𝑃𝑟 𝑃𝑟	(𝑥. = 0) 	= 𝑞#	
𝑃" =𝑃𝑟 𝑃𝑟	(𝑥. = 1) 	= 2𝑝𝑞	
𝑃# = 𝑃𝑟	(𝑥. = 2) = 𝑝#	

	 	
f.		 Under	this	assumption,	show	that	the	mean	and	variance	of	𝑥. 	are	given	by:	
	

𝐸(𝑥.) = 2𝑝,	
𝑉𝑎𝑟(𝑥.) = 2𝑝(1 − 𝑝).	

	
Hint:	Find	expected	values	by	expressing	all	allele	frequencies	in	terms	of	p	(where	𝑞 =
(1 − 𝑝)).	

	
The	coefficient	of	determination,	or	𝑅#,	of	a	regression	is	defined	as	the	proportion	of	
variance	explained	by	the	predictor	variables:	𝑅# ≡ 012(34$)

012(5$)
.		

	
g.		 Show	that	
	

𝑅# =
2𝑝(1 − 𝑝)𝛽#

𝑉𝑎𝑟(𝑦.)
.	 (7)	

	
Hint:	Use	the	expression	for	𝑉𝑎𝑟(𝑥.)	from	part	f.	

	
Note	that	Equation	(7)	is	useful	empirically	in	genome-wide	association	study	(GWAS)	
meta-analyses,	in	which	results	from	regressions	run	in	different	datasets	(typically	with	
some	differences	in	control	variables	across	datasets)	are	combined	to	yield	a	single,	
overall	estimate	of	𝛽.	In	such	meta-analyses,	it	is	common	to	use	the	sample	analog	of	
equation	(7)—i.e.,	a	version	of	equation	(7)	calculated	using	the	sample	estimates	of	𝑝,	
𝑉𝑎𝑟(𝑦.),	and	𝛽—to	calculate	an	estimate	of	𝑅#.	Equation	(7)	is	also	useful	theoretically	for	
conducting	power	calculations,	as	will	be	illustrated	in	Problem	3(j)	below.	
	
To	simplify	the	calculations	that	follow,	we	will	de-mean	the	phenotype	and	genotype	
variables:	define	𝑦_. ≡ 𝑦. − 𝐸(𝑦.)	and	𝑥_. ≡ 𝑥. − 𝐸(𝑥.).	
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h.	 Show	that	we	can	write	the	best	linear	predictor	for	𝑦_. 	as	a	function	of	𝑥_. 	as:	
	

𝐵𝐿𝑃(𝑦_.|𝑥_.) = 𝛽𝑥_. ,	
	

where	𝛽 = 678(5$,4$)
012(4$)

= 678(5:$,4:$)
012(4:$)

	.	

	
Hint:	Plug	the	de-meaned	variables	into	the	equations	for	𝛼	and	𝛽	given	above	to	show	
that	when	the	variables	are	de-meaned,	𝛼 = 0	while	𝛽	does	not	change.	

	
i.	 Using	the	expression	for	𝐸(𝑥.)	from	part	f,	show	that		

	
𝐸(𝑥_.|𝑥. = 0) = (𝑥_.|𝑥. = 0) = −2𝑝,	
𝐸(𝑥_.|𝑥. = 1) = (𝑥_.|𝑥. = 1) = 𝑞 − 𝑝,	
𝐸(𝑥_.|𝑥. = 2) = (𝑥_.|𝑥. = 2) = 2𝑞.	

	
j.		 In	part	i,	you	found	that	the	expected	values	of	the	de-meaned	genotype	score	depend	

solely	on	p	and	q.	Now,	we’ll	show	how	the	overall	and	conditional	expected	values	of	
the	de-meaned	phenotype	depend	on	p	and	𝑞,	as	well	as	the	additive	effect	a	and	the	
dominance	effect	d.	Using	equation	(5)	together	with	the	HWE	genotype	frequencies,	
show	that	 

	
𝐸K�̌�.L = 𝑎(𝑝 − 𝑞) + 2𝑝𝑞𝑑.	

	
k.	 Using	the	equation	from	part	j,	together	with	equation	(5)	and	the	fact	that	𝑦_. ≡ 𝑦. −

𝐸(𝑦.) = �̌�. − 𝐸K�̌�.L,	show	that	
	

𝐸(𝑦_.|𝑥. = 0) = −2𝑝(𝑎 + 𝑞𝑑),	
𝐸(𝑦_.|𝑥. = 1) = 𝑑(1 − 2𝑝𝑞) + 𝑎(𝑞 − 𝑝),	

𝐸(𝑦_.|𝑥. = 2) = 2𝑞(𝑎 − 𝑝𝑑).	
	
Next,	we	will	prove	that	the	slope	of	the	best	linear	predictor	function,	𝛽,	is	equal	to		
	

𝛽 = 𝑎 + 𝑑(𝑞 − 𝑝).	 (8)	
	
We	have	provided	the	steps	for	you,	since	the	math	gets	a	bit	messy.		
	
We	know	that	𝑉𝑎𝑟(𝑥_.) = 𝑉𝑎𝑟(𝑥.)	since	the	spread	of	a	random	variable	does	not	change	
after	subtracting	a	constant	(which	is	all	that	has	been	done	to	de-mean	the	variable).		
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We	also	know	that	𝐶𝑜𝑣(𝑦_. , 𝑥_.) = 𝐸(𝑦_.𝑥_.) − 𝐸(𝑦_.)𝐸(𝑥_.) = 𝐸(𝑦_.𝑥_.) − (0 ∗ 0) = 𝐸(𝑦_.𝑥_.).	By	
the	law	of	iterated	expectations,	𝐸(𝑦_.𝑥_.) = 𝐸(𝑥_.𝐸(𝑥_.)).	
	
Plugging	these	into	the	formula	𝛽 = 678(5:$,4:$)

012(4:$)
,	we	get:	

	

𝛽 =
𝐸 1𝑥2𝑖𝐸-𝑦2𝑖|𝑥2𝑖.3

𝑉𝑎𝑟(𝑥𝑖)
.	

	
The	numerator	of	this	expression	can	be	expanded	as	follows:	
	

𝐸K𝑥_.𝐸(𝑦_.|𝑥_.)L =a
;<#

;<!

𝑃𝑟(𝑥. = 𝑗)𝐸(𝑥_.|𝑥. = 𝑗)𝐸(𝑥. = 𝑗)	

= 𝑃!𝐸(𝑥. = 0)𝐸(𝑥. = 0) + 𝑃"𝐸(𝑥. = 1)𝐸(𝑥. = 1) + 𝑃#𝐸(𝑥. = 2)𝐸(𝑥. = 2).	
	
	
Using	the	equations	above	for	𝑃!, 𝑃"	and	𝑃#	(assuming	we	are	in	HWE),	for	𝐸(𝑥_.|𝑥. = 𝑗),	and	
for	𝐸(𝑦_.|𝑥. = 𝑗),	we	can	first	expand	and	then	simplify	the	expression	for	the	numerator.		
	
	

= [𝑞!(−2𝑝)(−2𝑝(𝑎 + 𝑞𝑑))] + [2𝑝𝑞(𝑞 − 𝑝)(𝑑(1 − 2𝑝𝑞) + 𝑎(𝑞 − 𝑝))] + [𝑝!(2𝑞)(2𝑞(𝑎 − 𝑝𝑑))]	
	
= c−2𝑝𝑞#K−2𝑝(𝑎 + 𝑞𝑑)Ld + [2𝑝𝑞(𝑞 − 𝑝)K𝑑(1 − 2𝑝𝑞) + 𝑎(𝑞 − 𝑝)L] + [2𝑝#𝑞K2𝑞(𝑎 − 𝑝𝑑)L]	
	
= [4𝑝#𝑞#𝑎 + 4𝑝#𝑞=𝑑] + [(2𝑝𝑞# − 2𝑝#𝑞)(𝑑 − 2𝑝𝑞𝑑 + 𝑎𝑞 − 𝑎𝑝)] + [4𝑝#𝑞#𝑎 − 4𝑝=𝑞#𝑑]	

	
= [4𝑝#𝑞#𝑎 + 4𝑝#𝑞=𝑑] + [2𝑝𝑞#𝑑 − 4𝑝#𝑞=𝑑 + 2𝑝𝑞=𝑎 − 2𝑝#𝑞#𝑎 − 2𝑝#𝑞𝑑 + 4𝑝=𝑞#𝑑

− 2𝑝#𝑞#𝑎 + 2𝑝=𝑞𝑎] + [4𝑝#𝑞#𝑎 − 4𝑝=𝑞#𝑑]	
	

= 4𝑝#𝑞#𝑎 + 2𝑝𝑞#𝑑 + 2𝑝𝑞=𝑎 − 2𝑝#𝑞𝑑 + 2𝑝=𝑞𝑎	
	
	
Recall	from	part	f	that	the	denominator,	𝑉𝑎𝑟(𝑥.) = 2𝑝(1 − 𝑝) = 2𝑝𝑞.	Then	
	
	

𝛽 =
𝐸 1𝑥2𝑖𝐸-𝑦2𝑖|𝑥2𝑖.3

𝑉𝑎𝑟(𝑥𝑖)
=
4𝑝2𝑞2𝑎 + 2𝑝𝑞2𝑑 + 2𝑝𝑞3𝑎 − 2𝑝2𝑞𝑑 + 2𝑝3𝑞𝑎

2𝑝𝑞 	

	
= 2𝑝𝑞𝑎 + 𝑞𝑑 + 𝑞#𝑎 − 𝑝𝑑 + 𝑝#𝑎.	
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Simplifying,	we	get	the	following	equation	for	𝛽:	
	
	

𝛽 = 𝑎-𝑝2 + 𝑞2 + 2𝑝𝑞.+ 𝑑(𝑞 − 𝑝)	
	
	
Since	𝑝 + 𝑞 = 1,	it	follows	that	(𝑝 + 𝑞)# = 1,	and	therefore	𝑞# + 𝑝# + 2𝑝𝑞 = 1.	Hence,	our	
final	formula	for	𝛽:	
	

𝛽 = 𝑎+ 𝑑(𝑞 − 𝑝)	
	
m.	 What	is	the	substantive	interpretation	of	𝛽?	In	your	answer,	be	sure	to	speak	to	the	

different	genetic	elements	that	this	formula	is	composed	of.	(Hint:	Can	it	be	described	
simply	as	the	additive	effect	𝑎?	Why	does	the	dominance	deviation	𝑑	enter	the	
formula?)	

	
Earlier,	we	decomposed	the	best	predictor	function	into	an	additive	effect	and	a	dominance	
deviation.	We	now	have	all	the	pieces	we	need	to	do	a	different	decomposition,	into	what	
are	called	variance	components.	
	
We	begin	by	defining	the	genetic	factor,	
	

𝐺(𝑥.) ≡ 𝐵𝑃(𝑦.|𝑥.) − 𝐸(𝑦.),	
	
which	is	the	best	predictor	of	the	phenotype	given	the	genotype,	de-meaned	to	make	the	
math	easier.	We	define	the	additive	variance	component,	or	the	additive	component,	as	the	
(de-meaned)	best	linear	predictor	of	the	phenotype	given	the	genotype:	
	

𝐴(𝑥.) ≡ 𝐵𝐿𝑃(𝑦.|𝑥.) − 𝐸(𝑦.).	
	
Finally,	we	define	the	dominance	variance	component,	or	the	dominance	component,	as	the	
improvement	in	prediction	from	using	the	best	predictor	relative	to	using	the	best	linear	
predictor:	
	

𝐷(𝑥.) ≡ 𝐵𝑃(𝑦.|𝑥.) − 𝐵𝐿𝑃(𝑦.|𝑥.).	
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Note	that	𝐺(𝑥.),	𝐴(𝑥.),	and	𝐷(𝑥.)	are	constants	when	evaluated	at	a	particular	genotype	𝑥. ,	
but	they	are	random	variables	when	𝑥. 	is	unobserved	(as	is	the	case	in	family	studies	or	
adoption	studies).	
	 	
n.		 Show	that:	
	

𝐺(𝑥.) = 𝐴(𝑥.) + 𝐷(𝑥.).	
	
o.		 Show	that	𝐴(𝑥.) = 𝛽𝑥_. .		
	
Using	the	results	from	part	k	and	the	proof	that	follows,	it	can	be	shown	that	the	following	
formulas	hold	(interested	students	can	verify	themselves):		
	

𝑥. 	 𝐴(𝑥.)	 𝐷(𝑥.)	
0	 −2𝑝𝛽	 −2𝑑𝑝#	
1	 (𝑞 − 𝑝)𝛽	 2𝑑𝑝𝑞	
2	 2𝑞𝛽	 −2𝑑𝑞#	

	
	p.		Using	the	results	from	part	i	and	the	formulas	in	the	table	above,	show	that:	
	

𝐸[𝐴] = 0,	
𝐸[𝐷] = 0.	

	
It	can	also	be	shown	that:	
	

𝑉𝑎𝑟(𝐴) = 2𝑝𝑞𝛽#,	
𝑉𝑎𝑟(𝐷) = (2𝑝𝑞𝑑)#.	

	
q.		 Using	either	the	results	from	part	i	together	with	the	table	from	part	o,	and/or	the	

properties	of	Ordinary	Least	Squares	regression,	show	that	
	

𝐶𝑜𝑣(𝐴, 𝐷) = 0.	
	

Hint:	Since	𝐴	and	𝐷	are	both	mean	zero,	Cov(𝐴, 𝐷)	=	E(𝐴𝐷).		
	
This	last	equality	is	an	important—and	useful—property	of	the	variance	decomposition:	it	
implies	that	the	additive	and	dominance	components	are	uncorrelated	with	each	other.		
	
r.		 Explain	why	it	also	implies	that	
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𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟(𝐴) + 𝑉𝑎𝑟(𝐷).	
	
Another	important	property	of	the	variance	decomposition	is	that,	even	if	the	dominance	
deviation	is	large,	the	additive	variance	component	captures	most	of	the	variance	in	the	
genetic	factor	if	one	of	the	alleles	is	relatively	rare	in	the	population.	Thus,	
	

𝑉𝑎𝑟(𝐴)
𝑉𝑎𝑟(𝐺) 	= 1.	

	
s.		 Explain	intuitively	why	this	is	true.		
	

Hint:	Suppose	𝑝	is	small,	say	𝑝 = 0.1.	What	are	the	HWE	genotype	frequencies	in	the	
population?	If	the	best	linear	predictor	of	𝑦. 	as	a	function	of	𝑥. 	(almost)	completely	
ignores	the	least	common	genotype,	how	large	will	the	difference	be	between	the	best	
predictor	function	and	the	best	linear	predictor	function?	

	
t.		 Consider	a	population	in	Hardy-Weinberg	equilibrium.	For	a	given	child,	let	𝑥@	and	𝑥A	

denote	the	mother’s	and	father’s	genotype,	respectively.	As	in	Problem	1,	let	𝑃; 	denote	
the	probability	that	child	𝑖	has	genotype	𝑥. = 𝑗	for	𝑗 ∈ {0,1,2}.	To	save	you	time,	the	
table	below	shows	the	probability	of	each	mother-father	combination	and	the	resulting	
probability	of	each	genotype	for	the	child.	

	
𝑥@	 𝑥A	 𝑃𝑟𝑜𝑏(𝑥@, 𝑥A)	 𝑃!	 𝑃"	 𝑃#	
0	 0	 𝑞# × 𝑞#	 1	 0	 0	
0	 1	 𝑞# × 2𝑝𝑞	 ½	 ½	 0	
0	 2	 𝑝# × 𝑞#	 0	 1	 0	
1	 0	 2𝑝𝑞 × 𝑞#	 ½	 ½	 0	
1	 1	 2𝑝𝑞 × 2𝑝𝑞	 ¼	 ½	 ¼	
1	 2	 2𝑝𝑞 × 𝑝#	 0	 ½	 ½	
2	 0	 𝑞# × 𝑝#	 0	 1	 0	
2	 1	 𝑝# × 2𝑝𝑞	 0	 ½	 ½	
2	 2	 𝑝# × 𝑝#	 0	 0	 1	

	
Classical	studies	of	heritability	(called	behavior	genetics	studies)	compare	observed	
correlations	between	family	members	with	theoretically	expected	correlations.	Here,	we	
will	focus	on	deriving	some	theoretically	expected	parent-child	correlations—for	
concreteness,	the	mother-child	correlation.	
	
Show	that	the	mother-child	correlation	in	the	additive	genetic	component	is:	



14	
 

	

𝐶𝑜𝑟𝑟(𝐴@, 𝐴.) ≡
𝐶𝑜𝑣(𝐴@, 𝐴.)

j𝑉𝑎𝑟(𝐴@)𝑉𝑎𝑟(𝐴.)
=
1
2.	

	
Hint:	the	algebra	is	again	tedious,	so	the	following	roadmap	may	be	helpful:		
	
1. From	the	information	in	the	table,	we	can	deduce:	

	
𝑃𝑟𝑜𝑏(𝑥. = 0|𝑥@ = 0) = 𝑞# × 1 + 	2𝑝𝑞 ×½+ 𝑝# × 0 = 𝑞,	
𝑃𝑟𝑜𝑏(𝑥. = 1|𝑥@ = 0) = 𝑞# × 0 + 	2𝑝𝑞 ×½+ 𝑝# × 1 = 𝑝,	
𝑃𝑟𝑜𝑏(𝑥. = 2|𝑥@ = 0) = 𝑞# × 0 + 	2𝑝𝑞 × 0 + 𝑝# × 0 = 0.	

	
(Alternatively,	the	algebra	can	be	skipped	by	reasoning	directly	from	the	assumption	of	
random	mating.)	Use	the	same	strategy	to	solve	for	𝑃(𝑥. = 𝑗|𝑥@ = 1)	and	𝑃(𝑥. = 𝑗|𝑥@ = 2)	
for	𝑗 ∈ {0,1,2}.		
	
2. Note	that	the	probability	that	both	the	mother	and	the	child	have	the	value	of	𝐴(𝑥.)	

corresponding	to	genotype	score	𝑥. = 0	is:	
	

𝑃𝑟𝑜𝑏K𝐴@ = 𝐴(0), 𝐴. = 𝐴(0)L	
= 𝑃𝑟𝑜𝑏(𝑥@ = 0, 𝑥. = 0)	

= 𝑃𝑟𝑜𝑏(𝑥. = 0|𝑥@ = 0)𝑃𝑟𝑜𝑏(𝑥@ = 0)	
= 𝑞 × 𝑞# = 𝑞=,	

	
where	𝑃𝑟𝑜𝑏(𝑥@ = 0)	is	equal	to	the	HWE	genotype	frequency	of	genotype	score	0.	
Similarly	calculate	𝑃𝑟𝑜𝑏K𝐴@ = 𝐴(𝑗), 𝐴. = 𝐴(𝑘)L	for	all	of	the	(other	8)	combinations	of	
genotype	scores	for	the	mother	𝑗 ∈ {0,1,2}	and	the	child	𝑘 ∈ {0,1,2}.	
	

3. By	definition,	the	covariance	is:	
	

𝐶𝑜𝑣(𝐴@, 𝐴.) =a
#

;<!

a
#

B<!

𝑃𝑟𝑜𝑏K𝐴@ = 𝐴(𝑗), 𝐴. = 𝐴(𝑘)L × c𝐴(𝑗) − 𝐸[𝐴]d × c𝐴(𝑘) − 𝐸[𝐴]d,		

	
where	𝐴(𝑗)	and	𝐴(𝑘)	are	the	values	from	the	table	in	part	o.	Show	that	this	equation	can	be	
rearranged	to	get:		
	

𝐶𝑜𝑣(𝐴@, 𝐴.) = 𝑞#[𝑞𝐴(0)𝐴(0) + 𝑝𝐴(0)𝐴(1)] +	

2𝑝𝑞 6
1
2 𝑞𝐴

(1)𝐴(0) +
1
2𝐴

(1)𝐴(1) +
1
2𝑝𝐴

(1)𝐴(2)7 +	
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𝑝#[𝑞𝐴(2)𝐴(1) + 𝑝𝐴(2)𝐴(2)].	
	
4. Simplify	the	equation	in	part	3	and	divide	by	j𝑉𝑎𝑟(𝐴@)𝑉𝑎𝑟(𝐴.)	(where	each	of	these	

two	variances	is	given	by	the	expression	in	part	p)	to	get	the	desired	result.	
	

Show	that	the	mother-child	correlation	in	the	dominance	genetic	component	is:	
	

𝐶𝑜𝑟𝑟(𝐷@, 𝐷.) ≡
𝐶𝑜𝑣(𝐷@, 𝐷.)

j𝑉𝑎𝑟(𝐷@)𝑉𝑎𝑟(𝐷.)
= 0.	

	
Some	important	additional	notes	
	
Note	1:	Calculations	like	those	in	part	t	can	be	used	to	help	draw	inferences	about	the	
relative	importance	of	the	additive	and	dominance	genetic	components	for	a	given	
phenotype.	For	example,	using	similar	calculations,	it	can	be	shown	that	between	siblings,	
the	correlation	in	the	additive	genetic	component	is	"

#
,	and	the	correlation	in	their	

dominance	genetic	component	is	"
C
.	The	fact	that	the	parent-child	correlation	in	height	is	

similar	to	the	sibling	correlation	therefore	constitutes	suggestive	evidence	that	the	
dominance	component	is	small,	and	hence	that	genetic	effects	on	height	can	be	well	
approximated	by	a	linear	model.	We	will	discuss	this	kind	of	inference	in	more	detail	
during	the	lectures.	
	
Note	2:	The	fact	that	the	parent-child	correlation	of	the	dominance	component	is	zero	is	
important	in	its	own	right,	for	the	purposes	of	studying	evolutionary	dynamics.	
	
Background	Reading	

● The	fundamental	statistical	concepts	used	in	the	problem	set	question—properties	
of	the	covariance	operator,	the	conditional	expectation	function,	the	law	of	iterated	
expectations,	etc.—are	covered	in	standard	statistical	texts.	A	good	source	if	you	
want	to	brush	up	on	these	concepts	is	chapter	5	in	Goldberger	(1991).	

● The	single-locus	model	is	covered	in	standard	texts,	see	for	example	chapter	6-9	in	
Falconer	and	Mackay	(1996),		Kwan,	Purcell	and	Sham	(2007)	and	Lynch	and	Walsh	
(1998).	See	also	Goldberger’s	(2005)	treatment	(especially	the	appendices),	which	
emphasize	the	BLP	interpretation	of	additive	genetic	variance.		
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3.			Statistical	power	
	
Suppose	we	want	to	estimate	the	effect	of	some	genetic	variable	(e.g.,	the	genotype	score	at	
a	particular	locus,	or	the	value	of	a	polygenic	index	that	aggregates	across	many	loci),	𝑥,	on	
a	phenotype,	𝑦.	Denote	the	best	linear	predictor	function	of	𝑦	given	𝑥—which	we	will	call	
the	population	regression	equation—by	
	

𝑦. = 𝜓 + 𝛽𝑥. + 𝜖. ,	 (9)	
	
where	𝑖	indexes	individuals,	𝜓	is	a	constant	(we	reserve	the	notation	𝛼	for	a	different	
variable,	defined	below),	and	𝜖. 	is	an	error	term	that	has	mean	0	and	is	uncorrelated	with	
𝑥. 	(where	both	are	true	by	definition	of	the	best	linear	predictor	function,	as	you	showed	in	
Problem	2(a)).	We	denote	the	variance	of	𝑥. 	by	𝜎4# .	The	parameter	we	want	to	estimate	is	𝛽.	
	
We	will	assume	that	𝜖. 	is	independent	across	individuals	and	has	variance	𝜎𝜖#	(that,	again,	
does	not	depend	on	𝑥.).	(Remember	that	each	of	these	is	a	substantive	assumption	that	
does	not	follow	from	the	fact	that	equation	(9)	is	the	best	linear	predictor	function.)		
	
Now,	suppose	we	draw	a	random	sample	of	N	individuals	from	the	population,	and	we	
estimate	the	regression	equation	(9)	in	our	sample	using	Ordinary	Least	Squares.	Let	𝛽> 	
denote	the	resulting	estimate	of	𝛽.	We	will	assume	that	the	distribution	of	(𝛽5	|𝛽)	is	
	

𝛽> 	|𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 ?𝛽,
𝜎𝜖2

𝜎𝑥2𝑁
@.	

	
This	equation	is	exactly	true	when	𝜖. 	is	normally	distributed,	and	the	Central	Limit	
Theorem	implies	that	it	is	a	very	good	approximation	when	N	is	large.	
	
Suppose	𝜎𝜖#	and	𝜎4# 	are	known,	so	that	we	can	calculate	the	true	standard	error	of	𝛽> ,	which	

is	defined	as	r𝑉𝑎𝑟K𝛽s	|𝛽L.		The	standard	error	is	thus	 #!
#𝑥√𝑁

.		

	
The	observed	t-statistic,	which	is	defined	as	the	estimated	parameter	divided	by	its	
standard	error,	is	therefore	
	

𝑡7GH ≡
𝛽s𝜎4
𝜎I
√𝑁

.	

	
a.		 Show	that	the	distribution	of	the	observed	t-statistic	is	
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𝑡7GH|	𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 u
𝛽𝜎4
𝜎I
√𝑁

, 1v.	

	
Note:	In	practice,	𝜎𝜖#	and	𝜎4# 	are	usually	not	known	and	must	be	estimated.	In	that	case,	the	
t-statistic	is	defined	as	𝛽> 	divided	by	the	estimated	standard	error.	As	a	result,	the	t-statistic	
follows	a	t-distribution	rather	than	a	normal	distribution,	and	hence	the	distribution	has	
fatter	tails.	We	assume	that	𝜎𝜖#	and	𝜎4# 	are	known	in	order	to	keep	the	calculations	simpler.	
Moreover,	the	normal	distribution	is	a	good	approximation	to	the	t-distribution	when	N	is	
large.	
	
Suppose	the	null	hypothesis,	𝐻!,	is	that	there	is	no	relationship	between	the	genetic	
variable	and	the	phenotype:	𝛽 = 0.	Note	that	under	the	null,	the	distribution	of	the	t-
statistic	follows	a	standard	normal	distribution:	
	

𝑡7GH|	(𝛽 = 0) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1).	
	
Denote	our	threshold	for	statistical	significance	by	𝛼.	We	will	reject	the	null	hypothesis—
and	declare	our	estimated	𝛽> 	to	be	statistically	significant—whenever	the	observed	t-
statistic	turns	out	to	be	in	a	region	with	less	than	𝛼%	probability	under	the	null.	
Specifically,	we	will	define	the	rejection	region	by	two	thresholds:	𝑡&

"
	is	the	left	𝛼

#
%	tail	of	the	

distribution,	and	𝑡"'J&"K
	is	the	right	𝛼

#
%	tail	of	the	distribution,	as	illustrated	below.	

	

	
	



19	
 

Let	𝛷	denote	the	cumulative	distribution	function	(CDF)	of	the	standard	normal	
distribution,	and	let	𝛷'"	denote	its	inverse	function.	(Reminder:	The	CDF	determines	the	
probability	that	a	randomly	drawn	t-statistic,	t,	is	less	than	some	specific	value	of	t.)	
	
b.		 Explain	why	the	left	threshold	is	given	by	𝑡&

"
= 𝛷'" yL

#
z,	and	explain	why	the	right	

threshold	is	given	by	𝑡"'J&"K
	= 𝛷'" y1 − L

#
z.	

	
Suppose	the	alternative	hypothesis,	𝐻",	corresponds	to	an	anticipated	effect	size,	𝛽",	for	
some	specific	value	|𝛽"|	>	0.	
	
c.		 Show	that	the	distribution	of	the	observed	t-statistic	under	the	alternative	hypothesis	is	

	
𝑡7GH|	(𝛽 = 𝛽") ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝐶𝑃, 1),	

	
where	𝑁𝐶𝑃 ≡ 3#M'

()
√+

	is	called	the	non-centrality	parameter.		

	
Conclude	that	

	
(𝑡7GH − 𝑁𝐶𝑃)|	(𝛽 = 𝛽") ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1).	

	
Power	is	the	probability	of	rejecting	the	null	hypothesis	when	the	alternative	hypothesis	is	
true.	
	
d.		 Explain	why	the	area	of	the	shaded	region	in	the	figure	below	is	equal	to	the	level	of	

power.	Further,	explain	what	happens	as	the	NCP	grows	(i.e.,	approaches	infinity),	
holding	all	else	constant.	What	happens	as	the	NCP	approaches	0?	
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e.		 We	will	now	solve	for	power.	Justify	each	of	these	steps	of	algebra	to	solve	for	the	

probability	that,	under	the	alternative	hypothesis,	𝑡7GH	falls	in	the	rejection	region	in	the	
left	tail	of	the	distribution:	

	

𝑃𝑟 {𝑡7GH ≤ 𝑡L
#
} = 𝑃𝑟 {𝑡7GH − 𝑁𝐶𝑃 ≤ 𝑡L

#
− 𝑁𝐶𝑃}	

= 𝛷 {𝑡L
#
− 𝑁𝐶𝑃}	

= 𝛷 y𝛷'" y
𝛼
2z − 𝑁𝐶𝑃z.	

	
Using	an	analogous	argument,	show	that	the	probability	that	𝑡7GH	falls	in	the	rejection	
region	in	the	right	tail	is	

	

𝑃𝑟 {𝑡7GH ≥ 𝑡"'JL#K
} = 1 − 𝛷 y𝛷'" y1 −

𝛼
2z − 𝑁𝐶𝑃z.	

	
Conclude	that	the	level	of	power	is	given	by	

	

𝑃𝑜𝑤𝑒𝑟 = 	𝛷 y𝛷'" y
𝛼
2z − 𝑁𝐶𝑃z + 1 − 𝛷 y𝛷

'" y1 −
𝛼
2z − 𝑁𝐶𝑃z.	 (10)	

	
Notice	that	calculating	power	using	Equation	10	requires	calculating	NCP	using		
	

𝛽1𝜎𝑥
𝜎𝜖

.	
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f.		 If	the	phenotype	𝑦	is	educational	attainment,	then	what	are	the	units	of	&1𝜎𝑥𝜎𝜖

?	What	if	the	

phenotype	is	height?	
	

Hint:	Consider	the	units	of	𝛽",	𝜎4 ,	and	𝜎I .	How	do	they	cancel	out	(or	not)	in	the	
equation	for	the	NCP?	

	
We	will	now	develop	an	approximate	equation	for	NCP	that	is	also	unitless	and	therefore	
comparable	across	phenotypes,	but	that	is	often	more	convenient	to	use.	
	
g.		 Recall	from	Problem	2g	that	the	R2	of	a	regression	is	defined	as	the	proportion	of	

variance	explained	by	the	predictor	variables.	Under	the	alternative	hypothesis,	
consider	the	population	regression	equation	defined	by	Equation	9.	Justify	the	following	
steps	of	algebra:	

	

𝑅# ≡
𝑉𝑎𝑟(𝛽"𝑥.)
𝑉𝑎𝑟(𝑦.)

	

	

=
𝑉𝑎𝑟(𝛽"𝑥.)

𝑉𝑎𝑟(𝛽"𝑥. + 𝜖.)
	

	

=
𝑉𝑎𝑟(𝛽"𝑥.)

𝑉𝑎𝑟(𝛽"𝑥.) + 𝑉𝑎𝑟(𝜖.)
	

	

=
(𝛽")#𝜎4#

(𝛽")#𝜎4# + 𝜎I#
.	

	
Next,	show	that		

	
𝑅#

1 − 𝑅# =
(𝛽")#𝜎4#

𝜎I#
.	

	

Using	the	fact	that	 P
"

"'P"
≈ 𝑅#	when	𝑅#	is	small,	show	that	when	the	genetic	variable	

explains	a	small	amount	of	variance	in	the	phenotype,	we	can	approximate	NCP	by	
	

𝑁𝐶𝑃 = �𝑁
(𝛽")#𝜎4#

𝜎I#
≈ j𝑁𝑅#.	 (11)	
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h.		 Write	a	program	(in	R,	Matlab,	Stata,	etc.),	or	create	a	spreadsheet	in	Excel,	to	calculate	
power	as	a	function	of	𝛼,	N,	and	𝑅#	using	Equations	10	and	11.	Fill	in	the	entries	of	the	
table	below	with	the	level	of	power	corresponding	to	each	scenario.	Holding	the	other	
variables	constant,	how	does	power	change	as	sample	size	increases?	How	does	it	
change	as	the	explanatory	power	(R2)	of	the	genetic	variant	increases?	And,	is	it	higher	
or	lower	when	using	a	more	stringent	significance	threshold?	

	
(Note	that	the	effect	size	R2	=	0.0002	corresponds	to	single	genetic	variant	associated	
with	educational	attainment,	and	the	effect	size	R2	=	0.07	corresponds	to	a	current	
polygenic	index	for	educational	attainment.)	

	
	 Standard	significance	threshold	(α	=	0.05)	
	 N	=	100	 N	=	1,000	 N	=	10,000	 N	=	100,000	 N	=	1,000,000	
R2	=	0.0002	 	 	 	 	 	
R2	=	0.07	 	 	 	 	 	
	 	 	 	 	 	
	 Genome-wide	significance	threshold	(α	=	5×10-8)	
	 N	=	100	 N	=	1,000	 N	=	10,000	 N	=	100,000	 N	=	1,000,000	
R2	=	0.0002	 	 	 	 	 	
	
	
Suppose	that	𝑥. 	is	the	genotype	score	at	a	single	locus.	Recall	from	Problem	2g	that,	under	
HWE,	the	proportion	of	variance	in	the	phenotype	explained	by	the	locus	is	given	by	
Equation	7:		
	

𝑅# =
2𝑝(1 − 𝑝)𝛽#

𝑉𝑎𝑟(𝑦.)
,	

	
where	𝑝	is	the	frequency	of	the	reference	(+)	allele.	A	common	convention,	which	we	will	
adopt	in	the	remainder	of	this	problem,	is	to	choose	the	minor	allele	(the	one	that	is	less	
common	in	the	population)	as	the	reference	allele.	Loci	where	𝑝	is	small—often	defined	as	
𝑝 < 0.01—are	called	rare	variants,	and	other	loci	(where	0.01 ≤ 𝑝 ≤ 0.5)	are	called	
common	variants.	
	
i.		 Explain	why	equation	(7)	implies	the	following	two	facts:	
	
	 (i)	Holding	constant	N	and	α,	a	common	variant	that	has	population	regression	

coefficient	𝛽 ≠ 0	will	explain	a	greater	proportion	of	variance	than	a	rare	variant	that	
has	the	same	population	regression	coefficient	𝛽.	
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(ii)	Holding	constant	N	and	α,	we	have	more	power	to	detect	a	common	variant	that	has	
population	regression	coefficient	𝛽 ≠ 0	than	a	rare	variant	that	has	the	same	
population	regression	coefficient	𝛽.	

	
j.		 Now	consider	two	different	loci:	one	has	minor	allele	frequency	𝑝"	and	regression	

coefficient	𝛽",	and	the	other	has	minor	allele	frequency	𝑝#	and	regression	coefficient	𝛽#.	
Show	that,	holding	constant	N	and	α,	the	power	to	detect	these	two	loci	is	the	same	if	

	
𝑝"(1 − 𝑝")𝛽"# = 𝑝#(1 − 𝑝#)𝛽##.	

	
k.		 Supposing	𝑝" = 0.5	and	𝑝# = 0.01,	show	that	the	rare	variant’s	regression	coefficient	

must	be	roughly	5	times	larger	than	that	of	the	common	variant	in	order	for	the	study	
to	have	equal	power	to	detect	it.	
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4.			Standardized	regression	
	
For	some	purposes,	it	is	easier	to	work	with	variables	that	are	standardized,	meaning	that	
they	are	transformed	to	have	mean	0	and	variance	1.	For	that	reason,	throughout	this	
course,	we	will	sometimes	work	with	standardized	variables.	In	this	problem,	we	will	
derive	some	of	the	useful	properties	of	regression	with	standardized	variables.	
	
Consider	the	population	regression	equation	
	

𝑦. = 𝛼 + 𝛽𝑥. + 𝜖. ,	
	
where	𝑖	indexes	individuals,	and	𝜖. 	is	an	error	term	that	has	mean	0	and	variance	𝜎𝜖#.	
	
Define	the	standardized	variables:	
	

𝑦_. ≡
𝑦. − 𝜇5
𝜎5

				𝑎𝑛𝑑				𝑥_. ≡
𝑥. − 𝜇4
𝜎4

,	

	
where	𝜇5	is	the	mean	of	𝑦. ,	𝜎5	is	the	standard	deviation	of	𝑦. ,	𝜇4	is	the	mean	of	𝑥. ,	and	𝜎4	is	
the	standard	deviation	of	𝑥. .	
	
a.	 Show	that	
	

𝑦_. = 𝛽�𝑥_. + 𝜖.̃ ,	 (12)	
	

where	𝛽C ≡ &#𝑥
𝜎𝑦
,	and	𝜖_. 	is	an	error	term	that	has	mean	0	and	variance	

#!2

𝜎𝑦2
.	

	
b.		 Suppose	the	units	of	𝑦	are	years	of	education,	and	the	units	of	𝑥	are	the	number	of	

minor	alleles	at	a	particular	locus.	What	are	the	units	of	𝑦_	and	𝑥_?	What	are	the	units	of	
𝛽?	Of	𝛽C?	

	
c.		 One	useful	property	of	standardized	regression	is	that	the	regression	coefficient,	𝛽C,	is	

equal	to	the	correlation	coefficient,	𝑟45 .	Prove	that	property.	
	

Hint:	Use	the	following	two	facts:	(i)	by	the	properties	of	Ordinary	Least	Squares	
regression,	𝛽 = M'0

M'"
,	where	𝜎45	is	the	covariance	between	𝑥	and	𝑦;	and	(ii)	the	

correlation	coefficient	between	𝑥	and	𝑦	is	defined	as	𝑟45 ≡
M'0
M'M0

.	
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d.		 Prove	the	following	two	claims:	
	

(i) The	𝑅#	from	the	standardized	regression	equation	(12)	is	equal	to	the	𝑅#	from	the	
original	regression.	

	
(ii)	The	𝑅#	from	the	standardized	regression	equation	(12)	is	equal	to	the	squared	
correlation	coefficient,	𝑟45# .	

	
Putting	these	claims	together	with	part	c	gives	us	another	useful	property	of	standardized	
regression:	𝑅# = 𝛽�#.	
	
Note:	When	the	population	regression	equation	is	multivariate	rather	than	univariate,	the	
above	properties	still	hold,	but	the	correlation	coefficient	is	replaced	by	the	partial	
correlation	coefficient.	The	partial	correlation	coefficient	between	𝑥	and	𝑦	can	be	calculated	
by	(i)	running	a	regression	of	𝑦	on	the	other	regressors	(besides	𝑥);	(ii)	running	a	
regression	of	𝑥	on	the	other	regressors;	and	finally	(iii)	taking	the	correlation	between	the	
residuals	from	those	two	regressions.	
	
	


